Dehn filling with non-degenerate boundary slope rows

نویسنده

  • Xingru Zhang
چکیده

We prove that Dehn filling a small link exterior with a non-degenerate boundary slope row produces a 3-manifold which is either Haken and ∂-irreducible or one of very restricted typies of reducible manifolds (Theorem 2), generalizing a result of Culler, Gordon, Luecke and Shalen in the case of a knot exterior (Theorem 1). The result provides some interesting applications on exceptional Dehn fillings (Corollaries 3 and 4) and on telling if a link is small (Corollaries 5 and 6).  1999 Published by Elsevier Science B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dehn Fillings of Knot Manifolds Containing Essential Once-punctured Tori

In this paper we study exceptional Dehn fillings on hyperbolic knot manifolds which contain an essential once-punctured torus. Let M be such a knot manifold and let β be the boundary slope of such an essential once-punctured torus. We prove that if Dehn filling M with slope α produces a Seifert fibred manifold, then ∆(α, β) ≤ 5. Furthermore we classify the triples (M ;α, β) when ∆(α, β) ≥ 4. Mo...

متن کامل

Ja n 19 98 TOROIDAL AND BOUNDARY - REDUCING DEHN FILLINGS

Let M be a simple 3-manifold with a toral boundary component ∂0M . If Dehn filling M along ∂0M one way produces a toroidal manifold and Dehn filling M along ∂0M another way produces a boundary-reducible manifold, then we show that the absolute value of the intersection number on ∂0M of the two filling slopes is at most two. In the special case that the boundary-reducing filling is actually a so...

متن کامل

Reducing Dehn filling and toroidal Dehn filling

It is shown that if M is a compact, connected, orientable hyperbolic 3-manifold whose boundary is a torus, and 7‘1, FZ are two slopes on i7M whose associated fillings are respectively a reducible manifold and one containing an essential torus, then the distance between these slopes is bounded above by 4. Under additional hypotheses this bound is improved Consequently the cabling conjecture is s...

متن کامل

Annular and Boundary Reducing Dehn Fillings

Surfaces of non-negative Euler characteristic, i.e., spheres, disks, tori and annuli, play a special role in the theory of 3-dimensional manifolds. For example, it is well known that every (compact, orientable) 3-manifold can be decomposed into canonical pieces by cutting it along essential surfaces of this kind [K], [M], [Bo], [JS], [Jo1]. Also, if (as in [Wu3]) we call a 3-manifold that conta...

متن کامل

Se p 20 07 DEHN FILLING , VOLUME , AND THE JONES POLYNOMIAL

Given a hyperbolic 3–manifold with torus boundary, we bound the change in volume under a Dehn filling where all slopes have length at least 2π. This result is applied to give explicit diagrammatic bounds on the volumes of many knots and links, as well as their Dehn fillings and branched covers. Finally, we use this result to bound the volumes of knots in terms of the coefficients of their Jones...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999